Problem Sheet 13

Problem 1 (Valuation Rings)

Let A be an integral domain with quotient field K. Show that the following two conditions are equivalent

- (a) For every $x \in K^{\times}$, one has $x \in A$ or $x^{-1} \in A$.
- (b) The (a priori only) partially ordered abelian group

$$(\Gamma, \ge) := \left(K^{\times} / A^{\times}, \ x \ge y : \Leftrightarrow xy^{-1} \in A \right)$$

is a totally order abelian group.

Such rings are called *valuation rings*. Show that if A is a valuation ring, then

 $v: K \to \Gamma \sqcup \{\infty\}, \ x \mapsto xA^{\times} \text{ resp. } 0 \mapsto \infty$

is a valuation meaning that v is "additive" and $v(x+y) \ge \min\{v(x), v(y)\}$.

Problem 2 (Properties of Valuation Rings)

Let A be a valuation ring with quotient field K. Prove that

- (a) For any two ideals $\mathfrak{a}, \mathfrak{a}' \subseteq A$ one has $\mathfrak{a} \subseteq \mathfrak{a}'$ or $\mathfrak{a}' \subseteq \mathfrak{a}$. Hence A is local.
- (b) Every finitely generated ideal of A is a principal ideal.
- (c) Let $A \subseteq B \subseteq K$ be another ring. Show that B is also valuation and of the form $A_{\mathfrak{p}}$ for a prime ideal $\mathfrak{p} \subseteq A$.

Finally, consider the DVR $\mathbb{C}((y))[[x]]$ and its subring

$$A := \left\{ \sum_{n \ge 0} f_n(y) x^n \mid f_0 \in \mathbb{C}[[y]] \right\}.$$

Show that A is valuation and determine the ordered group K^{\times}/A^{\times} .

Problem 3

Let $v: K \to \mathbb{R} \cup \{\infty\}$ be a valued field. Recall that $\operatorname{NP}(f): \mathbb{R} \to \mathbb{R} \cup \{\infty\}$ denotes the Newton polygon of $f \in K[T]$. (By convention $\operatorname{NP}(f)(x) = \infty$ if there are are no $d, e \in \mathbb{N}$ with $x \in [d, e]$ and $a_d, a_e \neq 0$.) Show that

$$NP(fg) = NP(f) \star NP(g)$$

where the convolution on the right hand side is defined as

$$[\operatorname{NP}(f) \star \operatorname{NP}(g)](x) := \min_{i \in \mathbb{R}} \operatorname{NP}(f)(x-i) + \operatorname{NP}(g)(i).$$

Hint: You may extend scalars to \overline{K} first and assume f or g to be linear.

Problem 4

Prove that the completion \mathbb{C}_p of the algebraic closure $\overline{\mathbb{Q}_p}$ is algebraically closed. Hint: Apply Krasner's Lemma.