Problem Sheet 13

Problem 1 (Valuation Rings)

Let A be an integral domain with quotient field K. Show that the following two conditions are equivalent
(a) For every $x \in K^{\times}$, one has $x \in A$ or $x^{-1} \in A$.
(b) The (a priori only) partially ordered abelian group

$$
(\Gamma, \geq):=\left(K^{\times} / A^{\times}, x \geq y: \Leftrightarrow x y^{-1} \in A\right)
$$

is a totally order abelian group.
Such rings are called valuation rings. Show that if A is a valuation ring, then

$$
v: K \rightarrow \Gamma \sqcup\{\infty\}, x \mapsto x A^{\times} \text {resp. } 0 \mapsto \infty
$$

is a valuation meaning that v is "additive" and $v(x+y) \geq \min \{v(x), v(y)\}$.

Problem 2 (Properties of Valuation Rings)

Let A be a valuation ring with quotient field K. Prove that
(a) For any two ideals $\mathfrak{a}, \mathfrak{a}^{\prime} \subseteq A$ one has $\mathfrak{a} \subseteq \mathfrak{a}^{\prime}$ or $\mathfrak{a}^{\prime} \subseteq \mathfrak{a}$. Hence A is local.
(b) Every finitely generated ideal of A is a principal ideal.
(c) Let $A \subseteq B \subseteq K$ be another ring. Show that B is also valuation and of the form $A_{\mathfrak{p}}$ for a prime ideal $\mathfrak{p} \subseteq A$.

Finally, consider the DVR $\mathbb{C}((y))[[x]]$ and its subring

$$
A:=\left\{\sum_{n \geq 0} f_{n}(y) x^{n} \mid f_{0} \in \mathbb{C}[[y]]\right\}
$$

Show that A is valuation and determine the ordered group K^{\times} / A^{\times}.

Problem 3

Let $v: K \rightarrow \mathbb{R} \cup\{\infty\}$ be a valued field. Recall that $\mathrm{NP}(f): \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$ denotes the Newton polygon of $f \in K[T]$. (By convention $\mathrm{NP}(f)(x)=\infty$ if there are are no $d, e \in \mathbb{N}$ with $x \in[d, e]$ and $a_{d}, a_{e} \neq 0$.) Show that

$$
\mathrm{NP}(f g)=\mathrm{NP}(f) \star \mathrm{NP}(g)
$$

where the convolution on the right hand side is defined as

$$
[\mathrm{NP}(f) \star \mathrm{NP}(g)](x):=\min _{i \in \mathbb{R}} \mathrm{NP}(f)(x-i)+\mathrm{NP}(g)(i)
$$

Hint: You may extend scalars to \bar{K} first and assume f or g to be linear.

Problem 4

Prove that the completion \mathbb{C}_{p} of the algebraic closure $\overline{\mathbb{Q}_{p}}$ is algebraically closed.
Hint: Apply Krasner's Lemma.

